ARTICLES OF ASSOCIATION OF

Beijing Jingneng Clean Energy Co., Limited

北京京能清潔能源電力股份有限公司

 $(I \ c. \ \iota. \ a \ ed \ e \ Pe. \ \iota \ e', \ Rei \ \iota \ b \ c. f \ C \ a \ . \ ed \ ab \ .)$

Contents

1		1
2	$ au = V \cdot V$	3
3	\cdot	4
4	· · · · · · · · · · · · · · · · · · ·	8
5	${\Gamma}$. $_{\Gamma}$ A_{Γ}	12
6		13
, 7		17
8	\cdots 1 $\sim r^{I}$	22
. _. . 1	\cdots 1 · · · · · · · · · · · · · · · · · ·	22
2	\cdots	24
3		26
, 4	\dots X^{I} \dots Y^{I}	28
, , 5	$\cdots _{\Gamma }^{I} \cdots \bullet \cdots \cap _{\Gamma }^{I} \cdots \cap _{\Gamma }^{I} \cdots \cdots \cap _{\Gamma }^{I} \cdots \cap _{$	33
9		35
10		38
11	$\cdots ullet$	39
. _. . 1		39
2	·•·~··	41
3	$\cdots ullet$. The second secon	42
12		48
13	\ldots $_{1}$. \mathcal{L}	50
14	··· 1 ··· 1 ··· 1	52

15	$\mathcal{L}_{\mathcal{L}} = \mathcal{L}_{\mathcal{L}} = \mathcal{L}_{\mathcal{L}}$	53
. _r . 1	$\mathbf{r}_{\sigma_{i}, \dots, r_{i}}$.	53
· · · · · · 2	$\mathcal{L}_{\mathcal{L}}}}}}}}}}$	53
16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56
17	$=_{Y}$, $_{Y}$ A , $_{I}$, $_{Y}$ Z ,	63
18	$\mathbf{A}_{\mathbf{z}_{i,Y}}$ $\mathbf{A}_{i,Y}$. $\mathbf{A}_{i,Y}$. $\mathbf{A}_{i,Y}$	66
19	$ \cdot \mathcal{L} , _{L = V \setminus V} , _{L = V \setminus V} _{L = V \setminus V} _{L = V \setminus V} .$	69
. r. 1	$\mathcal{L} = \{ \bullet \in V Y \}.$	69
. _. . 2	$[L,\ldots]_{\mathbf{I}}$, $[L,\ldots,\bullet]$, $[h_{\mathbf{I}}]$, $[h_{\mathbf{I}}]$, $[h_{\mathbf{I}}]$	70
20	$\mathbf{A} = \mathbf{A} \cdot $	72
21	$\sim T$	73
22	$\sim 1, \cdots, \sim L_{-1}, \cdots$	75
23		76

Chapter 1 General

Article 1

Article 2

 $\frac{1}{2} \frac{1}{2} \frac{1}$

Article 3

ルール、 B E EA E E ., E ... E ...

Article 5

Article 6

 $oldsymbol{I}_{N}$, $oldsymbol{I}_{N}$

Article 7

Article 8

Article 9

 $= \cdots \times_{X} \times_{X}$

Article 10

Article 11

Article 12

Chapter 2 Operational Objectives and Scope

Article 13

Article 14

 $\frac{1}{1} \times_{A \setminus X} \cdot \frac{1}{1} \cdot \frac{1}$

Chapter 3 Shares, Registered Capital and Transfer of Shares

Article 15

Article 16

 $\mathbf{A}_{\mathbf{B}}$, , , , , , \mathbf{A} , \mathbf{A}

Article 17

 $\|\cdot\|_{L^{\infty}(\mathbb{R}^{N})} \leq \|\cdot\|_{L^{\infty}(\mathbb{R}^{N})} + \|\cdot\|_$

- Para and the state of the sta

Article 18

Article 19

 $\frac{1}{2} \left(\frac{1}{2} \left$

As a second of the second of

Article 20

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

 $\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i$

Article 21

A (CSRC) 29 A 2011, 246,428,550 - 246,428,550 - 328,421,500 - 32,842,150 - 32,842,150 - 1,149,905,454 - 1,149,905,454 - 327,508,000, 393,010,000 471,612,800 - 327,508,000, 393,010,000 471,612,800 - 2018, 2018, 2018, 2018, 2018.

A $x = x_1 = x_2 = x_3 = x_4 = x_4$

Article 22

Article 23

A constant $x \in \mathbb{R}^{N}$ and $x \in \mathbb{R}^{N}$ and

 $\frac{1}{\lambda_{1}} = \frac{1}{\lambda_{1}} \frac{1}{\lambda_{1}} = \frac{1}{\lambda_{1}} \frac{1}{\lambda_{1}} = \frac{1}{\lambda_{1}} \frac{1}{\lambda_{2}} = \frac{1}{\lambda_{2}} \frac{1}{\lambda_{1}} = \frac{1}{\lambda_{2}} \frac{1}{\lambda_{2}} = \frac{1}{\lambda_{2}} \frac{1}{\lambda_{2}} = \frac{1}{\lambda_{2}} \frac{1}{\lambda_{1}} = \frac{1}{\lambda_{2}} \frac{1}{\lambda_{2}} = \frac{$

Article 24

Article 25

8,244,508,144.

Article 27

 $(x_1, x_2, \dots, x_n) = (x_1, \dots$

Article 28

Article 29

Chapter 4 Increase, Reduction and Repurchase of Shares

Article 30

 $(\boldsymbol{\lambda}_{i} , \boldsymbol{\lambda}_{$

- (1) $\mathbf{I}_{[1, 1]}$, $\mathbf{I}_{[1, 2]}$, $\mathbf{I}_{[2]}$, \mathbf{I}
- $(2) \qquad \dots = \mathbb{I}_{X = X} \dots \mathbb{I}_{X =$
- $(3) \qquad {}_{\Gamma = \Gamma} = (1, \dots, 1, \dots, 1,$

Article 31

Article 32

A solve the second of the seco

- $(4) \quad A_{\bullet} \mathbf{1}_{TXY} \dots \dots \dots \dots \mathbf{1}_{TXY} \dots \dots \dots \mathbf{1}_{TXY} \dots \dots \mathbf$

- $(7) \qquad \qquad \lambda = \frac{1}{\lambda} + \frac{$

Article 34

- $(1) \qquad {}_{\Gamma} I , \qquad {}_{\sigma} I \qquad , \ldots , \qquad {}_{\Gamma} I \qquad , \qquad {$

- (4) $(4) \qquad (4) \qquad$

Article 36

Article 37

- (2) $\sum_{i \in X_i} \sum_{i \in X_i}$
 - $1, \qquad \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 =$
- (3) And the property of the second of the se
 - 1. $\mathbf{A}_{\mathbf{A}^{\mathbf{I}}_{YXY}}$, $\mathbf{A}_{\mathbf{A}^{\mathbf{I}}_{YXY}}$

Chapter 5 Financial Assistance for Purchase of Company Shares

Article 39

Article 40

 $= \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$

- (1) ;
- (2) $\mathbf{I} = \mathbf{I} = \mathbf{I$
- $(4) = {}_{r} \cdot {}_{$

Article 41

- $(x_1, x_2, \dots, x_{n-1}, \dots, x$
- $(2) \qquad \qquad \mathbf{1}_{1 \bullet Y} \quad \mathbf{1}_{Y} \quad \dots \quad \mathbf{1}_{X} \quad$

- $(4) \qquad (4) \qquad (4)$
- (6) $\sum_{T \in T} \sum_{T \in T}$

Chapter 6 Share Certificates and Register of Shareholders

Article 42

Article 43

Article 44

- (2)
- (3)

- $(4) \qquad \text{i.e. } \quad \text{i$

organistics to the control of the co

Article 45

 $\frac{1}{2\pi \pi^2 L^{1/2}} \frac{1}{2\pi \pi^2 L^{1/2}} \frac{1}{2\pi$

(x,y) = (x,y) + (x,y

Article 46

 $\cdots \cdot {}^{L_{Y}} \cdot \cdots \cdot$

- (1) A I_{Γ} I_{Γ}
- (2) $\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n}$

Article 47

- $(1) \quad A_{\cdot, \cdot} \quad \dots \quad X_{r-1} \quad \dots \quad X_{r-1}$
- $(2) \qquad , \qquad \ldots \qquad , \qquad 1 \qquad \ldots \qquad \ldots \qquad , \qquad \ldots \qquad , \qquad \ldots \qquad , \qquad 1 \qquad \ldots \qquad 1;$

- $(6) \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots ;$
- $(7) \quad \mathbf{A}_{r_1, \ldots, r_{r_1}, \ldots, r_{r_r}, \ldots, r_r}, \ldots, r_{r_r}, \ldots, r_r}, \ldots, r_{r_r}, \ldots, r_r}, \ldots, r_{r_r}, \ldots, r_r}, \ldots, r_{r_r},$

Article 49

 $= \frac{\mathbb{E}(x_1,x_2,\dots,x_{n-1},x$

Article 50

Article 52

 $\frac{\mathbf{A}_{-|\mathbf{x}-\mathbf{y}|}}{\mathbf{A}_{-|\mathbf{x}-\mathbf{y}|}} = \mathbf{A}_{-|\mathbf{x}-\mathbf{y}|} = \mathbf{A}_{-|\mathbf{x}-\mathbf{y}|$

 $\frac{1}{2} \left(\frac{1}{2} \left$

- (1) $\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i}$
- (3) $\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N}$

- (6) $\sum_{i \in \mathcal{A}_{i}} \sum_{i \in \mathcal{A}_{i}}$

Article 54

Chapter 7 Rights and Obligations of Shareholders

Article 55

 $(x_1, x_2, x_3, \dots, x_{1}, \dots, x_{2}, x_{2}, \dots, x_{2$

 $\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{3} + \mathbf{x}_{3} + \mathbf{x}_{4} + \mathbf{x}_{3} + \mathbf{x}_{3} + \mathbf{x}_{4} + \mathbf{x}_{4} + \mathbf{x}_{5} + \mathbf{x}_{4} + \mathbf{x}_{5} + \mathbf{x}_{5}$

- (1) L_{Γ} L_{Γ}
- $(2) \quad A_{||| \to ||| \to |||$

 \cdot , \cdot ,

- (2) $= (x_1, \dots, x_n) = (x_1,$

Article 56

 $\|\cdot\|_{\Psi^{N-1}} \cdot \|\cdot\|_{Y^{N-1}} \cdot \|\cdot\|_{Y^{N-1}$

- - 1. $A_{XY} = A_{XY} = A_{XY}$
 - 2. $\sum_{i=1}^{n} I_{i} = \sum_{i=1}^{n} I_{i} = \sum$
 - (1) (2) (3) (4)
 - $\binom{n}{k} = \underbrace{r_1 \cdot r_2 \cdot r_3}_{K_1} \cdot \dots \cdot r_{K_n} \cdot \dots \cdot r$

 - ·· Γ •• ·· (· · · · · · ·);

- $\bullet \cdot = \prod_{i=1}^{n} x_i \cdot \bullet \cdot \prod_{i=1}^{n} x_i \cdot \sigma = \prod_{i=1}^{n} x_i \cdot \prod_{i=1}^{n} \prod_{j=1}^{n} x_j \cdot \prod_{i=1}^{n} \prod_{j=1}^{n} x_j \cdot \prod_{j=1}^{n} \prod_{j=1}^{n} x_$
- ··· Portion of the section of the se
- $\binom{n}{n}$, $n \in \{1, \dots, n\}$, $n \in \mathbb{N}$,

- $(\gamma) \xrightarrow{} (\gamma) \xrightarrow{} (\gamma)$

- (6) $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$
- (8) $A_{X_{-1}X_{$

 $\frac{1}{2} \left(\frac{1}{2} \left$

Article 57

Article 59

 $\frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}$

 $\frac{1}{2} \left(\frac{1}{2} \left$

Article 60

Article 61

 $= \{ (-1)^{k_1} \cdot \dots \cdot (-1)^{k_1} \cdot \dots \cdot$

As a super some for a super significant probability \mathcal{L}_{Y} produces the second section of the second s

Article 62

- (2) A_{-} , A_{-}
- (3) A_{-1} , A_{-1} ,

- $(1) \qquad , \quad {}_{\Gamma} \chi_{\Gamma} \dots \chi_{$
- (2) $\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N}$
- (3) $\sum_{i=1}^{N} \frac{1}{i} \sum_{i=1}^{N} \sum_{i=1}^{N} \frac{1}{i} \sum_{i=1}^$
- $(4) \qquad , \quad _{Y} \star_{\Gamma} \ldots \times_{\Gamma} \ldots \times_{\Gamma}$

Chapter 8 General Meeting

Se薄ion 夬 摩 翍 韜 鯖 饨

P 幹飗黔壹鏋關金納颈幹⁵ 鏟褷顲豷荾荾莥隳霢銠樦潁蘠

- (11) $\mathbf{A} \sim \mathbf{A} \sim \mathbf{$

- $(15) \quad \underset{Y}{\dots} \quad \underset{Y}{\dots}$

- (2) $A_{i_1} A_{i_2} A_{i_3} A_{i_4} A_{i_5} A_{i_5}$
- $(4) \quad A_{\times_{X}} I_{1} \quad I_{1} \quad \dots \quad I_{\times_{X}} I_{1} \quad I_{1} \quad \dots \quad I_{\times_{X}} I_{1} \quad \dots$

Article 67

Article 69

- (1) $A_{i} = A_{i} =$

- $(6) \qquad \underset{X = X}{\longleftarrow} 1 \quad , \quad \underset{X = X}{\longrightarrow} 1 \quad , \quad \underset{X = X}{\longleftarrow} 1 \quad ,$

Article 70

Section 2 Proposing and Convening of General Meeting

Article 71

Article 73

 $\frac{10\%}{10\%} = \frac{10\%}{10\%} =$

- (2) $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$
- (3) $\sum_{x \in \mathcal{X}} \sum_{x \in \mathcal{X}$

Section 3 Proposals and Notices of General Meeting

Article 75

Article 76

 $E_{\ell} = \{ x \in Y \mid x \in \mathbb{R}, x \in \mathbb{$

Article 77

 $= \sum_{i=1}^{K} \frac{1}{i} \sum_$

- $(1) \quad \underset{I}{\longrightarrow} \quad \underset{I}{\longrightarrow} \quad \underset{I}{\longrightarrow} \quad I;$
- (2) $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7$

- (6) $A_{x_1, x_2, x_3}, A_{x_1, x_2}, A_{x_1, x_2}, A_{x_1, x_2}, A_{x_2, x_3}, A_{x_$
- $(7) \qquad \qquad , \qquad \prod_{1 \leq i \leq N} (i \leq i \leq N) \qquad \qquad , \qquad (7) \qquad \qquad (7) \qquad$

- (10) x_{H} x_{\text

Article 79

- (4) $\sum_{i \in \mathcal{I}_{i}} \sum_{i \in \mathcal{I}_{i}}$
- (5) $\sum_{Y \in \mathcal{Y}} \sum_{Y \in \mathcal{Y}$

Article 80

Article 81

Article 82

Section 4 Convening General Meeting

Article 83

As a super super

 $1 \rightarrow - 1/2 \rightarrow -1/2 \rightarrow -1$

Article 84

Article 85

- (1)

- (5) χ^{L} , Γ_{L} (Γ_{L}), χ^{L} χ^{L} χ^{L} Γ_{L} Γ_{L

Article 87

 $\frac{A_{i_1} \dots a_{i_1} a_{i_2} a_{i_3} a_{i_4} a_{i_4}$

Article 88

Article 89

A. $(I_Y - I_Y -$

Article 90

Article 92

 $\frac{L_{\text{total}}}{L_{\text{total}}} = \frac{L_{\text{total}}}{L_{\text{total}}} = \frac{L_{\text{total}}}{L_{\text{total}}$

Article 93

Article 94

 $\frac{1}{2} \left(\frac{1}{2} \left$

Article 96

Article 97

 $\langle x, \chi_{1}, \dots, \chi_{k-1}, \chi_{k-1}, \dots, \chi_{k$

- $(1) \qquad \qquad _{1} \ldots , \ldots \ldots \ldots \ldots ;$
- (2) $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$
- $(4) \qquad , \ldots, \ldots, \chi \qquad , \bullet_{Y} \qquad , \bullet_{X} \qquad , \ldots, \chi \qquad , \chi \qquad , \ldots, \chi \qquad , \chi \qquad$

Article 98

Article 99

Section 5 Voting and Resolutions at General Meetings

Article 100

 $\cdots \vdash_{\Gamma} \Gamma \cdots \vdash_{\Gamma} \Gamma \vdash_{\Gamma} \Gamma$

 $\bullet_{Y} = (-1)^{-1} \cdot Y = (-1)$

 $= \sum_{i=1}^{L} \left(\sum_{i=1}^{L} \sum_{i=1}^{L$

Article 101

Article 102

The transfer of the property o

Article 103

 $\frac{1}{2} \left(\frac{1}{2} \left$

Article 104

Article 106

Article 107

Article 108

Article 109

Article 110

oko ekiperin ola (m. 1921). Nezeki i nezy i noko nyelini i mononyeki elekikiki noko eniyîni. Nezekelin ola nok Oko komoniya ki ekiper majelini i mozeki i neze noko nyelini nezelini noko nezeki elekiki noko eniyeleki ki e Dokaki i nezy i nezy i nezeki nezeki eleki i nezelin elin noko ni nezeki i nezeki nezeki nezeki nezeki nezeki

Chapter 9 Special Procedures for Voting at Class Meeting

Article 111

Article 112

Article 113

 $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \times \mathbb{R}^n$

- 1. $\Gamma_{K} = \Gamma_{K} = \Gamma$
- 2. \mathbb{R}^{2} $\mathbb{R}^{$
- 3. The proof of $x = x^{2}$ is the following the first of $x = x^{2}$ and $x = x^{2}$.
- 4. The result of the result of

- 6. The set of the set

- 11. $(1 + 1)_{X} \mathcal{I} + (2 + 1$

 $(x_1, x_2, \dots, x_n)_{n=1}^{\infty} (x_1, x_2, \dots,$

Article 117

And the first of the section of the

Article 118

- (2) $\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N}$

Chapter 10 Party Committee

Article 119

Article 120

 $\frac{1}{\sqrt{N}} \left(\frac{1}{\sqrt{N}} \left(\frac{1}{\sqrt{N}} \right) + \frac{1}{\sqrt{N}} \left(\frac{1}{\sqrt$

- $(\cdot) \quad \bullet_{\Gamma} \quad \bullet \quad \bullet_{\Gamma} \quad \bullet \quad \bullet_{\Gamma} \quad \bullet \quad \bullet_{\Gamma} \quad \bullet_$
- $() \qquad \text{and} \qquad \text{if } \qquad \text{if$

Article 126

Article 127

Article 128

Article 130

Section 2 Independent Directors

Article 131

A. A_{-1} A_{-1}

Article 132

 $\mathbf{A}_{\|\Gamma^{-1}, \dots, \Gamma^{-1}, \mathbf{a}_{\Gamma^{-1}, \mathbf{$

Article 133

Article 134

Section 3 Board of Directors

Article 136

 $\lambda_{i} = \{ (x_i, x_i), (x_i, x_i) \in \mathbb{R}^{n_i} \mid x_i \in \mathbb{R}^{n_i} \mid x$

Article 137

Article 138

 $\mathcal{L}_{\mathcal{L}}$ $\mathcal{L}_{\mathcal{L}}$

- $(4) \quad \dots \quad \mathbf{1}_{1} \quad \dots \quad \mathbf{1}_{1} \quad \dots \quad \mathbf{1}_{1} \quad \dots \quad \mathbf{1}_{1} \quad \dots \quad \mathbf{1}_{N} \quad \dots \quad \mathbf{1}_{N}$

- $(7) \quad \dots \quad \mathbf{1}_{1} \quad \dots \quad \mathbf{2}_{K} \quad \dots \quad \mathbf{2}_{K}$
- $(8) \quad \ldots \quad \iota_{1} \quad \ldots \quad \iota_{r} \quad \ldots \quad \iota_{r}$

- (14) $A_{1} A_{2} A_{3} A_{4} A_{5} A_{5}$
- $(15) \quad \ldots \quad \mathbf{1}_{1} \quad \ldots \quad \mathbf{2}_{X \cdot Y} \quad \ldots \quad \mathbf{2}$
- (16) $L_{Y} = L_{Y} =$
- (17) $x_1, x_2, \dots, x_n, x_n, x_n, x_n, \dots, x_n, x_n, \dots, x_n, \dots$
- (18) $\Gamma_{1Y} = \Gamma_{1Y} = \Gamma_{1Y$

- And the second of the second o
- $L \longrightarrow L_1 \longrightarrow L_2 \longrightarrow$

 $E_{1} = \sum_{i=1}^{n} \sum_{i=1}^$

Article 139

Article 140

Article 142

- $(3) \qquad \dots \stackrel{I}{\downarrow} \dots \stackrel{I}{\downarrow$
- $(4) \quad , \quad \iota \quad , \quad \downarrow \quad , \quad \iota \quad , \quad \iota$
- (5) $\sum_{i=1}^{n} I_{i} + \sum_{i=1}^{n} I_{i} +$

- (8) $\Gamma_{1Y} \cdots \Gamma_{1} \cdots \Gamma_{1Y} \cdots \Gamma_{1Y}$

- $(11) \quad \stackrel{\cdot}{\overset{\cdot}{\overset{\cdot}{\cdot}}} \quad \stackrel{\cdot}{\overset{\cdot}{\cdot}} \quad$

Article 144

 $(\mathcal{L}_{\mathcal{A}}, \mathcal{L}_{\mathcal{A}}, \mathcal{$

Article 145

 $A_{11} = A_{11} = A$

Article 146

- (2) $\Gamma_{Y \bullet} = \Gamma_{Y \bullet} =$

- $(5) \qquad \qquad \dots \qquad \dots \qquad \qquad \prod_{i=1}^{n} I \qquad \dots \qquad \prod_{i=1}^{n} I.$

Article 148

 $E_{i} = \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_$

 $\{x_1, \dots, x_{k-1}, \dots, x_{k-1}$

As a second result process of a second process of \mathbb{R}^{k} and \mathbb{R}^{k} and \mathbb{R}^{k} are second results as a second result of \mathbb{R}^{k} and \mathbb{R}^{k} are second results as a sec

Article 149

Article 150

Article 151

Article 153

- $\mathcal{L}_{i} = \{1, \dots, \mathcal{L}_{i}, \dots, \mathcal{L}_{i}, \dots, \mathcal{L}_{i}, \dots, \mathcal{L}_{i}, \dots, \mathcal{L}_{i}, \dots, \mathcal{L}_{i}, \dots, \mathcal{L}_{i}\}$

- (3);
- (5) $\mathcal{L}_{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{5$

Article 154

Chapter 12 Secretary to the Board of Directors

Article 155

Article 156

And the second of the second o

- (2) $(X_{-1}/2, Z_{-1}, Z_{-1$
- $(3) \quad \underset{\leftarrow}{\sim} \quad \underset{\smile}{\sim} \quad \underset{\smile}{\sim}$
- $(4) \quad = \quad \sum_{Y \in \mathcal{X}} \left\{ X_{Y} : X_$
- $(5) \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=} \quad \underset{[1 \text{ } \Gamma^{\prime}] \rightarrow [1 \text{ } \Gamma^{\prime}]}{=}$
- (6) $\mathbf{I}_{[1]}$, $\mathbf{I}_{[2]}$, $\mathbf{I}_{[2]}$

- (4) $\dots \bullet_{\Gamma} \dots \bullet_{\Gamma}$
- (5) $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$

- (9) $\dots \bullet_{\Gamma} \dots \bullet_{\Gamma}$
- (10) $x_1 = x_1 + x_2 + x_3 + x_4 + x_5 +$

Article 158

Chapter 13 General Manager

Article 159

 $\frac{1}{2} \left(\frac{1}{2} \left$

Article 161

 $\frac{1}{1+\frac{1}{2}},\frac{1}{1+\frac{1}{$

- (3) $I_{-1}\sqrt{2} I_{-1}\sqrt{2} I_{-1} I_$

- (7) $= \sum_{i=1}^{n} \sum_{i=1}^{$

- (10) A_{1} A_{2} A_{3} A_{4} A_{5} A_{5}

Article 162

 $(\mathcal{L}_{-1}, \mathcal{L}_{-1}, \mathcal{L}_{-1$

- $(3) \quad \underset{1}{\underset{1}{\bigvee}} \quad (3) \quad \underset{1}{\underset{1}{\bigvee}} \quad (3) \quad \underset{1}{\underset{1}{\bigvee}} \quad (3) \quad \underset{1}{\underset{1}{\bigvee}} \quad (3) \quad$

Article 164

 $\frac{1}{X} = \frac{1}{X} + \frac{1}$

Chapter 14 General Counsel

Article 165

Article 166

Chapter 15 Board of Supervisors

Section 1 Supervisors

Article 167

Article 168

Article 169

Article 170

 $A_{\mathsf{close}}|_{Y^{\mathsf{close}}(Y$

Article 171

Article 172

A start Y is Y in Y in

Article 173

Section 2 Board of supervisors

Article 174

And the second of the second of the second

Article 176

Article 177

- 2. $(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \dots, \mathbf{y}_{N}, \mathbf{y}_{N}, \dots, \mathbf{y}_{N}, \mathbf{y}_{N}, \mathbf{y}_{N}, \mathbf{y}_{N}, \mathbf{y}_{N}, \dots, \mathbf{y}_{N}, \mathbf{y}_{N},$

of the state of th

Article 179

Article 180

 $\| (-1)^{\mathsf{L}} \|_{L^{\infty}} = \{ (-1)^{\mathsf{L}} \|_{L^{\infty}} + (-1)^{\mathsf{L}} \|_{L^{\infty}} +$

Article 181

 $\frac{1}{x^1} \cdot \dots \cdot \frac{1}{x^1} \cdot \dots \cdot \frac{1}{x^2} \cdot$

Article 182

- (1) $_{\bullet}$, $_{\bullet}$, $_{\bullet}$, $_{\bullet}$, $_{\bullet}$, $_{r}$,

Article 184

Chapter 16 Qualifications and Obligations of the Company's Directors, Supervisors and Other Senior Management

Article 185

- 9. ;

Article 187

- 3. . . . $(x_1, x_1, x_2, \dots, x_{1N}, x_2, \dots, x_{2N}, x_{2N},$
- 4. .. $\bullet = 1$ $\bullet = 1$

Article 188

Article 189

- 1. \ldots $_{|\Gamma|}$ $_{|$

- - (1) · · · · · · · · · ;
 - (2) $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$
 - $(3) \qquad {}_{1}{}_{1}{}_{2}{}_{3}{}_{4}{}_{5}{}_{$

- 2. (1), (1), (1), (2), (3), (4), (4), (4), (4), (4), (4), (4), (5), (7), (7), (8)
- 3. (1) (2) (2) (3) (4)
- 5. (4), (4)

Article 191

Article 192

Article 193

Article 194

Article 195

Article 196

 $(x_1, x_2, \dots, x_{n-1}, x_{n-1}, x_{n-1}, x_{n-1}, x_{n-1}, x_{n-1}, \dots, x_{n-1}, x_{n-1}, x_{n-1}, x_{n-1}, \dots, x_{n-1}, x_{n-1}, x_{n-1}, x_{n-1}, \dots, x_{n-1}, x_{n-$

- 2. $\sum_{Y \in \mathcal{Y}} \sum_{Y \in \mathcal{Y}}$

Article 197

- 1. $\sum_{i \in \mathcal{I}_{i}} \sum_{i \in \mathcal{I}_{i}}$
- $2. \qquad \text{if } x = \{x \in \mathbb{R}^n : x \in \mathbb{R}^n :$

Article 199

 $= \frac{1}{2} \left(\frac{1}{2}$

Article 200

- 1. $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum$

- 4. $(x_1, x_2, \dots, x_k) = (x_1, x_2, \dots, x_k) = (x_1, \dots, x_k) =$

- 1. \dots μ \dots

 $\mathbf{A}_{\bullet_{1}},\ldots,\mathbf{A}_{\bullet_{k}},\ldots,\mathbf{A}$

- $(1) \quad \text{i.i.} \quad \text{i.i.}$
- (3) $\sum_{X \in X^{-1} \setminus X^{-1} \setminus X^{-1}} \mathbf{1} \cdot \mathbf{1}$

Article 202

 $= \{ (x, x) \in \mathbb{R}^{n} : (x, y) \in \mathbb{R}^{n} :$

- $1, \qquad \dots \qquad \dots \qquad f_{r_1, \dots r_{j-1}, \dots, r_{j-$

As the second of the probability of the second of the sec

 $\frac{1}{2} \left(\frac{1}{2} \left$

Chapter 17 Financial Accounting System and Distribution of Profits

Article 204

Article 205

Article 206

Article 207

A $_{\Gamma}$. 21. $_{\Gamma}$. $_{\Gamma}$

Article 208

 $\frac{1}{2} \left(\frac{1}{2} \right) \cdot \frac{1}{2} \left(\frac{1}{2} \right) \cdot \frac{1}$

Article 210

Article 211

 $\left(oldsymbol{\lambda}_{i},\dots,o$

Article 212

Article 213

 $\frac{1}{1} \frac{1}{1} \frac{1}$

Article 215

 $(-1)^{-1} \cdot (-1)^{-1} \cdot (-1$

- 1. ,;
- 2.

A. . . . A_{i} and A_{i}

Article 216

Article 217

 $E \mapsto_{\mathcal{L}_{X} \times \mathcal{L}_{X} \times \mathcal{L}$

 $\frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}$

Article 218

A solution product the surface of t

Article 219

Chapter 18 Appointment of an Accounting Firm

Article 220

Article 221

 $\frac{1}{L} = \frac{1}{L} = \frac{1}$

Article 222

- $A, \dots, I_{i-1}, I_{i-1}, \dots, I$

- 3. $\sum_{i=1}^{L} \sum_{i=1}^{L} \sum_{i=1}^{L}$

 $\frac{\mathcal{L}_{X}(x_{1}, y_{2}, y_{3}, y_{4}, y_{$

Article 224

Article 225

Article 226

 $\frac{1}{|X|} = \frac{1}{|X|} + \frac{1}$

- $(4) \qquad \text{, } \quad \text{, }$

 - $2. \hspace{1cm} \text{$\scriptstyle \lambda \in \mathcal{I}_{1}, \ldots, \frac{1}{1} = \sum_{X} \mathcal{I}_{2} = \sum_{X} \mathcal{I}_{1} = \sum_{X} \mathcal{I}_{1} = \sum_{X} \mathcal{I}_{2} = \sum_{X} \mathcal{I}_{1} = \sum_{X} \mathcal{I}_{2} = \sum_{X} \mathcal{I}_{2$

Article 227

- - 1. $\sum_{i=1,\dots,K} f_{i+1} \cdots f_{i+1} \cdots$
- (2) $\frac{1}{1}$ $\frac{1}{1}$
- (3) $(1) \quad (1) \quad$

Chapter 19 Merger, Division, Dissolution and Liquidation

Section 1 Merger and Division

Article 228

 $|| \mathbf{x}_{L_{1}} \cdot \mathbf{x}_{L_{2}} \cdot$

Article 229

As a second of λ , we have λ and λ and

 $\frac{1}{2} \left(\frac{1}{2} \left$

Article 230

 $A, \ldots, a_{|X} \bullet a_{|$

Article 231

Section 2 Dissolution and Liquidation

Article 232

 \mathcal{L}_{i} , \mathcal{L}_{i}

- $(1) \quad A_{r_1, \ldots, r_{r_1}, \ldots,$
- (2) $\sum_{i=1}^{n} I_{i} \ldots \sum_{i=1}^{n} I_{i} \cdots I_{i} \cdots$

- $(5) \qquad , \text{ if } r_1, \ldots, r_{r-1}, \ldots, r_{r$
- (6) $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$

Article 233

A. A_{XY} . A. A_{XY} , A_{YY} . A. A_{XY} . A. $A_{$

 $A_{1,1} = A_{1,1} = A_{1$

Article 234

 $\|\mathbf{p}^{-1}\mathbf{p}-\mathbf{p}^{-1}\|_{L^{\infty}} \leq \|\mathbf{p}^{-1}\mathbf{p}^{-1}\|_{L^{\infty}} \|\mathbf{p}^{-1}\|_{L^{\infty}} \|\mathbf{p}^{-1$

 $\bullet \in \mathbb{R}^{n}, \ \mathbb{R}^{n} \times \mathbb{R}$

Article 236

- $(1) \quad _{|\mathcal{V}|} \quad _{\mathcal{V}} \quad _{\mathcal{V}$

- $(5) \qquad \qquad \prod_{i=1}^{N-1} I_i \qquad \qquad \prod_{i=1}^{N-1$
- (6) Y. . . Y. I Y. . ; . . •

Article 237

 $\lim_{x\to\infty} \frac{1}{|x|} = \lim_{x\to\infty} \frac{1}{|x|} = \lim_{x$

 $= (\frac{1}{2} + \frac{1}{2} + \frac$

 $|| (x + x) - (x + y)^2 - (1 + x) - (1 + x)^2 - (1 +$

Article 239

Article 240

 $\|\mathbf{h}_{\mathbf{k}}\|_{\mathbf{F}_{\mathbf{k}}}\|_{\mathbf{K}_{\mathbf{k}}} \leq \|\mathbf{h}_{\mathbf{k}}\|_{\mathbf{K}_{\mathbf{k}}}\|_{\mathbf{K}_{\mathbf{k}}} \leq \|\mathbf{h}_{\mathbf{k}}\|_{\mathbf{K}_{\mathbf{k}}}\|_{\mathbf{K}_{\mathbf{k}}}\|_{\mathbf{K}_{\mathbf{k}}} \leq \|\mathbf{h}_{\mathbf{k}}\|_{\mathbf{K}_{\mathbf{k}}}\|_{\mathbf{K}_{\mathbf{k}}} \leq \|\mathbf{h}_{\mathbf{k}}\|_{\mathbf{K}_{\mathbf{k}}}\|_{\mathbf{K}_{\mathbf{k}}}\|_{\mathbf{K}_{\mathbf{k}}} \leq \|\mathbf{h}_{\mathbf{k}}\|_{\mathbf{K}_{\mathbf{k}}}\|_{\mathbf{K}$

 $Y = (Y_1, \dots, Y_n) \times (Y_n, \dots, X_n) \times (Y_n, \dots, Y_n) \times (Y_n, \dots,$

Chapter 20 Amendment to Articles of Association

Article 241

Article 242

- (1) $\mathbf{A} = \mathbf{A} = \mathbf{A$
- (2) A_{11} , A_{21} , A_{31} ,
- $(3) \qquad \qquad A_{1} = A_{1} = A_{2} = A_{3} = A_{4} = A_{5} = A_{5$

Article 244

And the state of the second process of the s

- (1) $(1) \quad (1) \quad (2) \quad (3) \quad (3) \quad (4) \quad$

Article 245

Chapter 21 Notice

Article 246

 $\langle \cdot, \cdot_{\Lambda} \cdot \cdot \cdot \cdot \cdot \rangle = \langle \cdot, \cdot_{\Lambda} \cdot \cdot, \cdot_{\Lambda} \cdot \cdot, \cdot_{\Lambda} \cdot, \cdot$

- (1) · · · · · · · ;
- (2) . . . ;
- (3) ... / ;
- $(4) \quad \text{i.e.} \quad \text{i.e.}$
- (5) $z_1 z_1 z_1, \dots, z_n;$

Chapter 22 Settlement of Disputes

Article 250

 $(X_{i_1}, \dots, X_{i_{j+1}}, \dots,$

(1) $\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N}$

 $x_1 - x_2$, $x_2 - x_3 - x_4 - x_4$

Chapter 23 Supplementary Articles

Article 251

Definition

- $(1) \quad \underset{\Gamma}{\overset{\bullet}{\longrightarrow}} \quad A_{1,\Gamma} \quad A_{2,\Gamma} \quad \underset{\Gamma}{\overset{\bullet}{\longrightarrow}} \quad \underset{\Gamma}{\overset{\bullet}{\longrightarrow}} \quad X_{1,\Gamma} \quad \ldots \quad \underset{\Gamma}{\overset{\bullet}{\longrightarrow}} \quad X_{2,\Gamma} \quad \ldots \quad \underset{\Gamma}{\overset{\bullet}{\longrightarrow}} \quad X_{2,\Gamma} \quad \ldots \quad \underset{\Gamma}{\overset{\bullet}{\longrightarrow}} \quad \underset{\Gamma}{\overset{\Gamma}{\longrightarrow}} \quad \underset{\Gamma}{\overset{\bullet}{\longrightarrow}} \quad \underset{\Gamma}{\overset{\bullet}{\longrightarrow}} \quad \underset{\Gamma}{\overset{\Gamma}{\longrightarrow}} \quad \underset{\Gamma}{\overset{\Gamma$
- (3) \mathbf{A}_{\cdots} $\mathbf{A}_$

Article 252

Article 253

Article 254

Article 255